RNA polymerase-promoter interactions determining different stability of the Escherichia coli and Thermus aquaticus transcription initiation complexes

نویسندگان

  • Vladimir Mekler
  • Leonid Minakhin
  • Konstantin Kuznedelov
  • Damir Mukhamedyarov
  • Konstantin Severinov
چکیده

Transcription initiation complexes formed by bacterial RNA polymerases (RNAPs) exhibit dramatic species-specific differences in stability, leading to different strategies of transcription regulation. The molecular basis for this diversity is unclear. Promoter complexes formed by RNAP from Thermus aquaticus (Taq) are considerably less stable than Escherichia coli RNAP promoter complexes, particularly at temperatures below 37°C. Here, we used a fluorometric RNAP molecular beacon assay to discern partial RNAP-promoter interactions. We quantitatively compared the strength of E. coli and Taq RNAPs partial interactions with the -10, -35 and UP promoter elements; the TG motif of the extended -10 element; the discriminator and the downstream duplex promoter segments. We found that compared with Taq RNAP, E. coli RNAP has much higher affinity only to the UP element and the downstream promoter duplex. This result indicates that the difference in stability between E. coli and Taq promoter complexes is mainly determined by the differential strength of core RNAP-DNA contacts. We suggest that the relative weakness of Taq RNAP interactions with DNA downstream of the transcription start point is the major reason of low stability and temperature sensitivity of promoter complexes formed by this enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombinant Thermus aquaticus RNA polymerase, a new tool for structure-based analysis of transcription.

The three-dimensional structure of DNA-dependent RNA polymerase (RNAP) from thermophilic Thermus aquaticus has recently been determined at 3.3 A resolution. Currently, very little is known about T. aquaticus transcription and no genetic system to study T. aquaticus RNAP genes is available. To overcome these limitations, we cloned and overexpressed T. aquaticus RNAP genes in Escherichia coli. Ov...

متن کامل

Structure of a bacterial RNA polymerase holoenzyme open promoter complex

Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full trans...

متن کامل

Mycobacterial RNA polymerase forms unstable open promoter complexes that are stabilized by CarD

Escherichia coli has served as the archetypal organism on which the overwhelming majority of biochemical characterizations of bacterial RNA polymerase (RNAP) have been focused; the properties of E. coli RNAP have been accepted as generally representative for all bacterial RNAPs. Here, we directly compare the initiation properties of a mycobacterial transcription system with E. coli RNAP on two ...

متن کامل

Multiple roles of the RNA polymerase β′ SW2 region in transcription initiation, promoter escape, and RNA elongation

Interactions of RNA polymerase (RNAP) with nucleic acids must be tightly controlled to ensure precise and processive RNA synthesis. The RNAP β'-subunit Switch-2 (SW2) region is part of a protein network that connects the clamp domain with the RNAP body and mediates opening and closing of the active center cleft. SW2 interacts with the template DNA near the RNAP active center and is a target for...

متن کامل

Cloning and Expression of Thermus Aquaticus DNA Polymerase Gene, Using a Thermo-Inducible Expression Vector

DNA polymerase gene from Thermus aquaticus strain YT1 was amplified using VENTTM DNA po-lymerase and cloned under the control of X.PR promoter and expression was induced by a shift in tern perature. The culture was then sonicated, and after centrifugation the lysate was treated with poly‌ethyleneimine followed by a salting-out step. Finally the protein was precipitated with ammonium sulfate and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012